https://sebastianraschka.com

Modern machine learning An introduction to the latest techniques

Sebastian Raschka

Seed Networks Computational Biology Meeting

About Myself

Contact:

https://sebastianraschka.com

🈏 @rasbt

Affiliation:

Assistant Professor Department of Statistics https://stat.wisc.edu

Background & Specialties:

- Computational Biology
- Machine learning
- Deep learning
- Wisconsin State Parks

Slides: http://sebastianraschka.com/pdf/slides/2021-04_czi.pdf

(1) Intro to Machine Learning What is Machine Learning

Deep Learning Frameworks

(3) Challenges

Small Data **Ordinal Data Adversarial Attacks** Bias

Topics

(2) Methods that Work

Tabular Data Images Sequences & Text Improving Performance

(4) **Recent Trends** Graphs Self-supervised Learning Transformers

(1) Intro to Machine Learning What is Machine Learning Deep Learning Frameworks

The Traditional Programming Paradigm

Machine Learning is the field of study that gives computers the ability to learn without being explicitly programmed – Arthur Samuel (1959)

Image source: https://sebastianraschka.com/blog/2020/intro-to-dl-ch01.html

Intro to Machine Learning > What is Machine Learning?

Machine Learning

The 3 Broad Categories of ML (and DL)

Image source: Raschka and Mirjalili (2019). Python Machine Learning, 3rd Edition. https://www.packtpub.com/product/python-machine-learning-third-edition/9781789955750

Intro to Machine Learning > What is Machine Learning?

Focus of today's talk

- Labeled data
- Direct feedback
- Predict outcome/future

"Label learning"

- Regression
- Classification

- No labels/targets
- No feedback
- Find hidden structure in data
- Decision process
- > Reward system
- Learn series of actions

The Connection Between Fields

E.g., symbolic expressions, logic rules / "handcrafted" nested if-else programming statements ...

Image source: https://sebastianraschka.com/blog/2020/intro-to-dl-ch01.html

Intro to Machine Learning > What is Machine Learning?

E.g.,

generalized linear models, tree-based methods, "shallow" networks, support vector machines, nearest neighbors, ...

E.g., ML deep neural networks capable of automatic feature extraction

Deep Learning Frameworks: An Abbreviated History

2000s:

- OpenNN, Torch, Matlab

2010s:

- (Multi)-GPU support: Caffe, config files; Chainer imperative; Theano declarative

2015s:

- TensorFlow (Google), declarative
- Caffe2 (FAIR, by TensorFlow dev)
- CNTK (Microsoft)
- DyNet (Carnegie Mellon University)
- Paddle Paddle (Baidu)
- MXNet (Amazon support), declarative & imperative "mix"
- Keras API
- PyTorch (FAIR), imperative (Torch and Chainer)

Intro to Machine Learning > Deep Learning Frameworks

Things Looks Much Simpler in 2021

2000s:

- OpenNN, Torch, Matlab

2010s:

- Caffe, config files; Chainer imperative; Theano declarative

2015s:

- TensorFlow (Google), declarative
- Caffe2 (FAIR, by TensorFlow dev)
- -CNTK (Microsoft)
- MXNet (Amazon support), declarative & imperative "mix"

-Keras

. . .

- PyTorch (FAIR), imperative (Torch and Chainer)

2021:

- TensorFlow v2 +
- PyTorch
- JAX

Intro to Machine Learning > Deep Learning Frameworks

(PyMC3)

(2) Methods that Work Tabular Data Images Sequences & Text

- Improving Performance

Structured vs Unstructured Data

Α

Feature vector of the 1st training example

Index	Sepal length	Sepal width	Petal length	P
1	5.1	3.5	1.4	
2	4.9	3	1.4	
3	4.7	3.2	1.3	
	•••			
150	5.9	3	5.1	

Image source: https://sebastianraschka.com/blog/2020/intro-to-dl-ch01.html

Methods That Work > Tabular Data

Β

11

Supervised Learning Methods for Tabular Data

Linear classifier/regressor as a good baseline: Linear / (Multinomial) logistic regression

Robust non-linear classifier without tuning: Random forests

State-of-the-art model for tabular data: Gradient boosting (XGBoost, LightGBM, HistGradientBoostingClassifier...)

Methods That Work > Tabular Data

Supervised Learning Methods for Tabular Data

Iris classification toy example: sepal lengths & widths

Methods That Work > Tabular Data

Feature Selection

Methods That Work > Tabular Data

SequentialFeatureSelector

Sebastian Raschka (2018) MLxtend: Providing machine learning and data science utilities and extensions to Python's scientific computing stack. The Journal of Open Source Software 3.24.

Raschka, Kuhn, Scott, Li (2018) Computational Drug Discovery and Design: Automated Inference of Chemical Group Discriminants of Biological Activity from Virtual Screening Data. Springer. ISBN: 978-1-4939-7755-0

Raschka, Liu, Gunturu, Scott, Huertas, Li, and Kuhn (2018) Facilitating the Hypothesis-driven Prioritization of Small Molecules in Large Databases: Screenlamp and its Application to GPCR Inhibitor Discovery. Journal of Computer-Aided Molecular Design, 32(3), 415-433.

Sebastian Raschka, Chan Zuckerberg Initiative -- Seed Networks CompBio 2021

14

Convolutional Neural Networks for Image Data

Image Source: twitter.com%2Fcats&psig=AOvVaw30_o-PCM-K21DiMAJQimQ4&ust=1553887775741551

Image Source: https://www.pinterest.com/pin/ 244742560974520446

Convolutional Neural Networks (CNNs) for Image Classification

Methods That Work > Image Data

Image Comparison (e.g., Face Recognition)

Source: MUCT dataset

Methods That Work > Image Data

Image Synthesis (e.g., Generative Adversarial Network)

Source: MNIST dataset

Methods That Work > Image Data

Sebastian Raschka, Chan Zuckerberg Initiative -- Seed Networks CompBio 2021

17

Convolutional Neural Network Architectures (~2019)

Image source: Analysis of deep neural networks By Alfredo Canziani, Thomas Molnar, Lukasz Burzawa, Dawood Sheik, Abhishek Chaurasia, Eugenio Culurciello https://culurciello.medium.com/analysis-of-deep-neural-networks-dcf398e71aae

Methods That Work > Image Data

CNNs Also Work for 1D and (here) 3D Data

Fig. 2. The pipeline of our 3D-CNN implementation for the protein-ligand affinity prediction based on the OctSurf representation. Surface point clouds of binding pockets and bound ligands are rasterized into the octree-based volumetric representation, OctSurf, which are fed into the 3D-CNNs for binding affinity prediction.

Liu Q, Wang PS, Zhu C, Gaines BB, Zhu T, Bi J, Song M. OctSurf: Efficient hierarchical voxel-based molecular surface representation for protein-ligand affinity prediction. Journal of Molecular Graphics and Modelling. 2021 Jun 1;105:107865. https://www.sciencedirect.com/science/article/pii/S1093326321000346

Methods That Work > Image Data

19

Recurrent Neural Networks for Text (and Sequence Data in General)

Image source: Sebastian Raschka, Vahid Mirjalili. Python Machine Learning. 3rd Edition. Birmingham, UK: Packt Publishing, 2019 https://www.packtpub.com/product/python-machine-learning-third-edition/9781789955750

Methods That Work > Text Data

RNNs Are Versatile With Respect to Prediction & Generation Tasks

many-to-many

Figure based on: The Unreasonable Effectiveness of Recurrent Neural Networks by Andrej Karpathy (http://karpathy.github.io/2015/05/21/rnn-effectiveness/)

Methods That Work > Text Data

RNNs Can Be Used for Predictive and Generative Modeling

Grisoni F, Moret M, Lingwood R, Schneider G. Bidirectional molecule generation with recurrent neural networks. Journal of Chemical Information and Modeling. 2020 Jan 6;60(3):1175-83. https://pubs.acs.org/doi/abs/10.1021/acs.jcim.9b00943

Methods That Work > Text Data

C(=0)0)c1

clccc(CC(C)C)ccl

SMILES strings of Ibuprofen

Methods That Work > Improving Performance

L10.1 Techniques for Reducing Overfitting https://youtu.be/KOBmBjIMVAE

Academia Vs Industry

Model-Centric Approach

Primary focus is on tuning and developing models to improve performance on a fixed benchmark set

Source: Andrej Karpathy, Andrew Ng

Methods That Work > Improving Performance

Data-Centric Approach

Primary focus is on how one can improve the dataset (collect more, select, relabel) to improve model performance

What Problem Do You Want To Solve?

Source: Andrew Ng

Methods That Work > Improving Performance

Ten Quick Tips for Deep Learning in Biology

Image source:

Lee BD, Gitter, A, Greene CS, Raschka S, Maguire F, Titus A, Kessler M, Lee AJ et al. Ten Quick Tips for Deep Learning in Biology (under review) https://benjamin-lee.github.io/deep-rules/manuscript.pdf

Methods That Work > Improving Performance

What is the Best/ **Recommended Model Evaluation Strategy?** It Depends!

Image Source: Sebastian Raschka (2018). Model Evaluation, Model Selection, and Algorithm Selection in Machine Learning. https://arxiv.org/abs/1811.12808

Methods That Work > Improving Performance

Creative Commons Attribution 4.0 International License.

BY

:ive -- Seed Networks CompBio 2021

(3) Challenges Small Data **Ordinal Data Adversarial Attacks** Bias

Tackling Small Data Problems

Active learning Optimize data order and labeling

Few-shot learning

Special cases with very few examples per class (incl. transfer learning, metric learning, semi-supervised, meta-learning)

> Self-supervised learning Pre-train on unlabeled dataset by creating leveraging data structure to create labels

Challenges > Small Data

Transfer learning Pre-train on larger related dataset with labels

Semi-supervised learning Incorporate unlabeled data into the training

Ordinal Data: Integrating Label Order Info

Ranking: Predict Correct order

Ordinal regression: Predict correct (ordered) label (E.g., age of a person in years; here, regard aging as a non-stationary process)

Excerpt from the UTKFace dataset https://susanqq.github.io/UTKFace/

29

Challenges > Ordinal Data

(0 loss if order is correct, e.g., rank a collection of movies by "goodness")

Cao, Mirjalili, Raschka (2020) Rank Consistent Ordinal Regression for Neural Networks with Application to Age Estimation Pattern Recognition Letters. 140, 325-331 https://www.sciencedirect.com/science/article/pii/S016786552030413X

41

Beyond Pandas & Gibbons: Real-World Adversarial Attacks

Tesla Autopilot considers (a) as a real person and (b) as a real road sign

Nassi, Mirsky, Nassi, Ben-Netanel, Drokin, Elovici. Phantom of the ADAS: Securing Advanced Driver-Assistance Systems from Split-Second Phantom Attacks. ACM SIGSAC Conference on Computer and Communications Security, 2020 https://eprint.iacr.org/2020/085.pdf

Challenges > Adversarial Attacks

Laser beams turn buses into amphibians and street signs into soap dispensers

Duan, Mao, Qin, Yang, Chen, Ye, He. Adversarial Laser Beam: Effective Physical-World Attack to DNNs in a Blink. arXiv:2103.06504. 2021 Mar 11. https://arxiv.org/abs/2103.06504

Some Common Adversarial Attacks & Defenses

	Cleverhans v3.0.1	FoolBox v2.3.0	ART v1.1.0	DEEPSEC (2019)	AdvBox v0.4.1						
Supported frameworks											
TensorFlow	yes	yes	yes	no	yes						
MXNet	yes	yes	yes	no	yes						
PyTorch	no	yes	yes	yes	yes						
PaddlePaddle	no	no	no	no	yes						
(Evasion) attack mechanisms					-						
BLB [163]	yes	no	no	yes	no						
AMD [170]	yes	no	no	no	no						
ZOO [171]	no	no	yes	no	no						
VA [172]	yes	yes	yes	no	no						
AP [173]	no	no	yes	no	no						
STA [174]	no	yes	yes	no	no	Defence mechanisme		-			
DTA [175]	no	no	yes	no	no	Feature Squeezing [200]	no	no	Ves	no	VAS
FGSM [176]	yes	yes	yes	yes	yes	Spatial Smoothing [200]	no	no	yes ves	no	yes
R+FGSM [177]	no	no	no	yes	no	Label Smoothing [200]	no	no	yes	no	yes
R+LLC [177]	no	no	no	yes	no	Gaussian Augmentation [201]	no	no	yes	no	yes
U-MI-FGSM [178]	yes	yes	no	yes	no	Adversarial Training [185]	no	no	yes	yes	yes
T-MI-FGSM [178]	yes	yes	no	yes	no	Thermometer Encoding [202]	no	no	yes	yes	yes
BIM [179]	no	yes	yes	yes	yes	NAT [203]	no	no	no	yes	no
LLC / ILLC [179]	no	yes	no	yes	no	EAI [177] DD [204]	no	no	no	yes	no
UAP [180]	no	no	yes	yes	no	ICR [205]	no	no	no	yes	no
DeepFool [181]	yes	yes	yes	yes	yes	EIT [206]	no	no	ves	yes ves	no
NewtonFool [182]	no	yes	yes	no	no	RT [207]	no	no	no	yes	no
JSMA [183]	yes	yes	yes	yes	yes	PixelDefend [208]	no	no	yes	yes	no
CW/CW2 [184]	yes	yes	yes	yes	yes	Regrbased classfication [209]	no	no	no	yes	no
PGD [185]	yes	no	yes	yes	yes	JPEG compression [210]	no	no	yes	no	no
OM [186]	no	no	no	yes	no						
EAD [187]	yes	yes	yes	yes	no						
Boundary Attack [188]	no	yes	yes	no	no						
HopSkipJumpAttack [189]	yes	yes	yes	no	no						
MaxConf [190]	yes	no	no	no	no						
Inversion attack [191]	yes	yes	no	no	no						
SparseL1 [192]	yes	yes	no	no	no						
SPSA [193]	yes	no	no	no	no						
HCLU [194]	no	no	yes	no	no						
ADef [195]	no	yes	no	no	no	Raschka S. Patterson	J. Nolet C	. Machine I	earning in	python: M	ain develo
DDNL2 [196]	no	yes	no	no	no	and tachnology trands	in data a	nionoo ma	bino loor	ing and a	rtificial
Local Search [197]	no	yes	no	no	no	and technology trends	s in uata so	Jence, mac		ing, and a	uncial
Pointwise attack [198]	no	yes	no	no	no	intelligence. Information	on. 2020 A	pr;11(4):19	3.		
GenAttack [199]	no	yes	no	no	no	https://www.mdpi.cor	n/2078-24	89/11/4/19	3		

Challenges > Adversarial Attacks

pments

Challenges > Bias

https://web.br.de/interaktiv/ki-bewerbung/en/

Challenges > Bias

A bookshelf alters the results even more than the picture frame. The result calculated by the AI differs significantly from that of the original version.

https://web.br.de/interaktiv/ki-bewerbung/en/

News@Northeastern

HUMANS ARE TRYING WURKING-YET

Zaid Khan:

as 'white' if that person had blond hair."

https://news.northeastern.edu/2021/02/22/humans-are-trying-to-take-bias-out-of-facial-recognition-programs-its-not-working-yet/

Paper:

Khan Z, Fu Y. One Label, One Billion Faces: Usage and Consistency of Racial Categories in Computer Vision. ACM Conference on Fairness, Accountability, and Transparency 2021 Mar 3 https://dl.acm.org/doi/abs/10.1145/3442188.3445920

Challenges > Bias

- Common approach: Address lack of diversity in datasets.
- --> provide algorithms with datasets that represent all groups equally and fairly
- Does it work? Only for a stereotypical sense of fairness according to
 - "The people in the images appeared to fit racial stereotypes."
 - For example, an algorithm was more likely to label an individual in an image

Computer Science > Machine Learning

[Submitted on 1 Apr 2021]

An Investigation of Critical Issues in Bias Mitigation Techniques

Robik Shrestha, Kushal Kafle, Christopher Kanan

https://arxiv.org/abs/2104.00170

- Learning inappropriate biases can cause DL models to perform badly on minority groups
- Several methods were developed to address this, but do they work?
- Here: \bullet
 - Improved evaluation protocol & dataset
 - Evaluation of 7 methods
 - Biased MNIST dataset
- Code and data: https://github.com/ erobic/bias-mitigators

Challenges > Bias

Computer Science > Machine Learning

[Submitted on 1 Apr 2021]

An Investigation of Critical Issues in Bias Mitigation Techniques

Robik Shrestha, Kushal Kafle, Christopher Kanan

https://arxiv.org/abs/2104.00170

We define two more metrics to help measure bias resistance. Majority/Minority Difference (MMD) simply measures the difference between majority and minority groups:

 $MMD = [Acc_{majority} - Acc_{minority}].$

High MMD indicates that methods rely on factors that work for majority groups, but not for minority groups. The sec-

Challenges > Bias

different methods.

(4) Recent Trends Graphs Self-supervised Learning Transformers

Why Are Graph Neural Nets Interesting?

Sebastian Raschka and Benjamin Kaufman (2020) Machine Learning and AI-based Approaches for Bioactive Ligand Discovery and GPCR-ligand Recognition Elsevier Methods, 180, 89–110 https://www.sciencedirect.com/science/article/pii/S1046202319302762

Recent Trends > Graph Neural Nets

PyTorch geometric

https://github.com/rusty1s/pytorch_geometric

As of this writing: 82 graph neural net methods already implemented

Recent Trends > Graph Neural Nets

Self-Supervised Learning "Assisted Label Learning"

Leverage structure of data to create labels for supervised learning, to utilize large amounts of unlabeled data

- 1. Create labels (pre-text task) by leveraging structure of the data 2. Pre-train in self-supervised fashion to learn embeddings 3. Fine-tune in transfer learning fashion

Recent Trends > Self-Supervised Learning

Classic Self-Supervised Learning Example A B

Image source: https://sebastianraschka.com/blog/2020/intro-to-dl-ch01.html

Based on: Doersch, C., Gupta, A., & Efros, A. A.. Unsupervihttps://arxiv.org/abs/1505.05192

Recent Trends > Self-Supervised Learning

Based on: Doersch, C., Gupta, A., & Efros, A. A.. Unsupervised visual representation learning by context prediction. CVPR 2015

Zbontar, Jing, Misra, LeCun, Deny. **Barlow Twins: Self-Supervised Learning via Redundancy Reduction** arXiv:2103.03230, 2021 Mar 4.

https://arxiv.org/abs/2103.03230

Recent Trends > Self-Supervised Learning

- 1. Run original and distorted image through same network
- 2. Compute correlation matrix
- 3. Add objective to make correlation matrix close to identity matrix

Forces representation vectors of similar samples to be similar

Goyal, Caron, Lefaudeux, Xu, Wang, Pai, Singh, Liptchinsky, Misra, Joulin, Bojanowski. Self-supervised Pretraining of Visual Features in the Wild. arXiv:2103.01988, 2021 Mar 2. https://arxiv.org/abs/2103.01988

- SEER = SElf-supERvised
- new billion-parameter self-supervised computer vision model
- pretraining on a **billion** random, **unlabeled** and uncurated public Instagram images
- self-supervised SOTA: reaching 84.2 percent top-1 accuracy on ImageNet
- SwAV (<u>https://arxiv.org/abs/2006.09882</u>) uses online clustering to rapidly group images with similar visual concepts and leverage their similarities (doesn't need pair-wise comparisons; fast)

Self-Supervised Learning (Text Example)

Input sentence:

A quick brown fox jumps over the lazy dog A quick brown [MASK] jumps over the lazy dog

15% randomly masked:

BERT

Recent Trends > Self-Supervised Learning

Possible classes (all words)

https://arxiv.org/abs/2007.06225

Recent Trends > Self-Supervised Learning

• Eukaryota • Archaea

Alpha & beta (a+b)

10000

Recent Trends > Language Transformers

"Old" Language Transformer Models

Image Source: <u>https://medium.com/huggingface/distilbert-8cf3380435b5</u>

THE COST OF TRAINING NLP MODELS A CONCISE OVERVIEW

Barak Peleg AI21 Labs barakp@ai21.com

Or Sharir AI21 Labs ors@ai21.com

April 2020

http://arxiv.org/abs/2004.08900

Costs: Not for the faint hearted

- \bullet

Yoav Shoham AI21 Labs yoavs@ai21.com

• \$2.5k - \$50k (110 million parameter model) • \$10k - \$200k (340 million parameter model) \$80k - \$1.6m (1.5 billion parameter model)

In Parallel: Increased Focus on Making Transformers Accessible

https://arxiv.org/abs/2009.06732

Recent Trends > Language Transformers

"Transformers for Computer Vision" is a Fast Growing Field

Khan, Naseer, Hayat, Zamir, Khan, Shah. Transformers in Vision: A Survey. arXiv preprint arXiv:2101.01169. 2021 Jan. https://arxiv.org/abs/2009.06732

Recent Trends > Vision Transformers

Fig. 3. A taxonomy of self-attention design space.

Computer Science > Computer Vision and Pattern Recognition

[Submitted on 1 Apr 2021]

EfficientNetV2: Smaller Models and Faster Training

Mingxing Tan, Quoc V. Le

https://arxiv.org/abs/2104.00298

CNNs remain relevant for image data

EfficientNetV2:

Large improvement over EfficientNets V1 Also beats Visual Transformers ;)

Introduces

new ops such as Fused-MBConv progressive increasing of image size during training -> adaptively adjusting regularization via dropout and data augmentation

Recent Trends > Vision Transformers

(b) Parameter efficiency.

EffNet-B7

Contact:

https://sebastianraschka.com

@rasbt

Sebastian Raschka

Slides: <u>http://sebastianraschka.com/pdf/slides/2021-04_czi.pdf</u>

